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PLASTIC DEFORMATION OF AN ISOTROPICALLY STRAIN-HARDENING 

POLYCRYSTALLINE MATERIAL 

O. A. Volokhovskaya and V. V. Podalkov UDC 539.374 

It is known that the features of the elastoplastic deformation of metals are deter- 
mined by their polycrystalline structure. Thus, the equations that describe the deforma- 
tion of the polycrystal should be derived on the basis of study of the processes that take 
place within its grains. It has been established experimentally that, at moderate tem- 
peratures, plastic deformation occurs mainly by the mechanism of translational crystallo- 
graphic slip. Slip is anisotropic and leads to strain-hardening of a single crystal. This 
strain-hardening is expressed in an increase in the limiting shear stress in both active 
(active strain-hardening) and passive (latent strain-hardening) systems and must be taken 
into account when choosing the corresponding strain-hardening law. The elastic and plastic 
anisotropy of crystallites and intergranular interactions occurring throughout the deforma- 
tion history of the material cause the fields of.local stresses and strains in it to be 
nonuniform. Thus, the equation that connects macroscopic stresses and strains should be 
determined by averaging relations between the corresponding local fields over the entire 
volume of the specimen. There is a fairly large number of consistent theories in which 
the researcher, in the course of deriving the governing equation, made a detailed study 
of one of the above-mentioned aspects of the plastic deformation of polycrystals [1-5]. 
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In the present study, we propose a relatively simple method of obtaining an equation 
to describe the elastoplastic behavior of a material with an arbitrary loading program. 
In contrast to the well-established theories, we attempt to combine empirical substantia- 
tion of the local strain-hardening law with the concept of multiple slip and a relatively 
simple procedure for averaging over the space of orientations of the grains of the aggre- 
gate. A similar scheme was examined in [3] for uniaxial tension. 

I. Plastic Deformation in Grains of a Polycrystal. We will examine one grain of a 
polycrystal undergoing plastic flow. Let the grain have n active slip systems. Then the 
following relation [2] should be satisfied inside the grain 

t~ ~j = ~ ,  ~j = 2 t ~  ( 1 . 1 )  

Here, sij, sij are the deviators of the local stresses and plastic strains, which are as- 

signed in the laboratory coordinate system connected with the specimen; %~, I~ are the shear 
stress and plastic shear acting in system ~. The tensor of the Schmidt coefficients tij~ is 
determined by the expression 

t~" t [/(~)n(~ ) l(~)n(a) 
,~=~ti J + i ~ ] ( 1 . 2 )  

(l(=),n (~) are unit vectors in the slip direction and the direction of a normal to the slip 
plane of system ~). No summation is performed over the indices in the brackets. 

The strain-hardening law of the single crystal can be written in the form 

where H~$ are the coefficients of the strain-hardening matrix, these coefficients accounting 
for active and latent strain-hardening in slip systems and being dependent on the strain 
history of the material; ~0 is the resolved shear stress associated with the initial shear. 
It has been observed experimentally that H~$ and ~0 are dependent on the elastic properties 
and microstructure of the material [6]. 

It was shown in [7, 8] that ~0 can be calculated with the Hall-Petch empirical equation 
for the macroscopic elastic limit of a polycrystalline material. It is determined by the 
type of crystalline lattice and mean grain size, but it is only slightly sensitive to the 
dispersion of the size distribution of the crystallites. The parameters H~B characterize 
the strain-hardening of a single crystal in an elastoplastic medium and should be found 
from experiments conducted with polycrystalline specimens. 

According to the isotropic strain-hardening law in [i] 

n 

~---- ~o + ~ H Ecli~ �9 (1.3) 

It follows from this that the flow stress is the same in all active systems. We will as- 
sume that the following expression [5] is sufficiently accurate for multiple slip in a 
crystal 

(1.4) 
This allows us, at each stage of the strain history, to introduce the concept of an effec- 
tive slip system for plastic grains with the shear integral A = nl and the Schmidt coeffi- 
cient tensor [5]: 

tij = n - -  t~. (1.5) 
(Z:l 

In (1.5), tij depends on the type and number of active slip systems in the crystal and its 
orientation relative to the loading axes. 

Allowing for (1.3)-(1.5) and changing over from finite quantities to their increments, 
we find from (i.i) that 

Here and below, a=da. 

t i / i j  = HJk, e i j=  2t~jA. (1.6) 
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We will examine materials which exhibit regular strain-hardening [9] in the region 
of activation of the slip systems in their grains. The stress-strain curves of such 
materials in this region are characterized by a monotonically decreasing strain-hardening 
modulus. Many metals and alloys can be classed as materials of this type. 

we introduce the local strain-hardening modulus H through the relation 

H = 2 h t h l t h l  (1.7) 

(h = const and depends on the type of material). 

The parameter h in (1.7) is a discrete function of the number of active slip systems 
of the single crystal and decreases with an increase in n. Its value for each n depends 
on the type of macroscopic stress-strain state in the medium and the orientation of the 
grains relative to the loading axes. The representation of H in the form (1.7) models 
features of the regular strain-hardening of the medium at the microstructural level. For 
example, for an fcc crystal having 24 systems with four slip planes {iii} and six slip 
directions [ii0], the strain-hardening modulus changes within the range H = h (1.0-0.534). 
Here, the left boundary of the interval corresponds to the exact upper boundary of H for 
n = i, while the right boundary corresponds to its exact lower boundary for n = 5. 

2. Relationship between Local and Macroscopic Stresses and Strains. In a plastically 
deformed polycrystal, it is possible to distinguish three structural phases formed by the 
grains at different stages of plastic deformation. The first of these phases (q = i) is 
formed by crystals which are completely plastic. The number of active slip systems for 
these crystals is equal to the maximum possible number of independent systems (n = N ~ 5). 
The second phase (q = 2) is composed of crystallites which are not fully plastic (n < N), 
while the third phase (q = 3) is formed by elastic grains (n = 0). The spatial structure 
of such a polycrystal can be described by a set of random indicator functions of the coor- 
dinates Kq(r) (q = i, 2, 3), each of which is equal to unity for the set of points of the 
q-th phase and equal to zero outside this set. Let vl, v2, v 3 be the volume concentrations 
of the corresponding crystallites in the material, dependent on its macroscopic stress- 
strain state. 

Various models of intergranular interaction [1-5, 7] can be used to determine the con- 
nection between the local and macroscopic stress-strain states. Striving to obtain the 
simplest overall rheological equation, we use the results in [2]. We have 

s!Y) = NiJ - -  b 8ij (q = 1, 2, plastic grains ), 

s~) = ~ij (q = 3, e l a s t i c  g r a i n s  ). ( 2 . 1 )  

Combining Eqs. 

Here 

(2.1) by means of the indicator functions, we find 

sU = ~U --  b~u• (• = ul(r) + • ( 2 . 2 )  

~U = ~ij> + b~ij>, b = 2~(I -- ~), ~ = 2(4 -- 5v)/15(i -- v) 
(2.3) 

(~ is the shear modulus; v is the Poisson's ratio; 6ij is the deviator of the tensor of 
the total local strains; <a> is the mathematical expectation of a). 

Henceforth assuming that the random fields sij, eij, sij, tij, ~q are statistically 
uniform and ergodic, we replace their mathematical expectation by quantities, averaged over 
the volumes of the phases Vq and the total volume V, that coincide with the averages for 
the set of crystallite orientations in the phase and the medium, i.e., 

t Ia (r )  dr, <a>q__vty a(r)dr 
<a> = V  ~ , q vq 

(q = t, 2, 3, V = VI'{- V2 + V~). 

In this case, it is obvious that the equality Vq = <Kq(r)> = VqV -l is valid. 
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Augmenting Eqs. (2.2) with Hooke's law for the local and macroscopic stresses and 
strains 

sij = 2~(eij -- e;u• <'ei7 > = 2.a(<'Q]> -- <el J>)' (2.4) 

we obtain the complete system of relations which connects the local and macroscopic stress- 
strain states of the medium. 

3. Equation of Plastic Strain of the Polycrystal. We will examine single crystals 
in the completely plastic state (q = I). It follows from (1.6)-(1.7) that 

[7 <~> - h -<~)] q~t  i j o~ j=0. (3.1) 

The grains lose their plastic anisotropy when they are in the fully plastic state. Thus, 
condition (3.1) should be satisfied for any crystallographic direction. The following equa- 
tion is valid as a result 

; ~1) _ h;~])  = o. , ( 3 . 2  ) 

We use (2.1) and (3.2) to determine the local strains in the first phase of the poly- 
crystal 

" ( 3 . 3 )  

As r e g a r d s  t h e  p a r t i a l l y  p l a s t i c  c r y s t a l s  o f  t h e  s e c o n d  p h a s e ,  we u s e  ( 1 . 6 ) - ( 1 . 7 ) a n d  ( 2 . 1 )  
to obtain the below expression for integral shear 

A(~) = ~ " t f f ( ~ d ~ # ~ ( ~  - P + ~))  (3.4) 

We find the local plastic strains in the grains of the second phase from (1.6) and (3.4) 

~ ( 2 )  " ~j = ~l hlth/~ff(fpqtpq2~ t (~ - -  ~ + ~))" ( 3 . 5  ) 

Then averaging Eq. (2.2) over the entire volume of the material with allowance for 
(3.3) and (3.5) in accordance with the rule governing the mechanical mixing of phases, we 
find the macroscopic stresses in the medium 

q~ = (i -- ~)l(i -- ~ + t~), Tijl~ ! = <t i j th / tpq tpq>~.  ( 3 . 6 )  

Expressing qij in (3.6) on the basis of (2.3), we represent the macroscopic equation de- 
scribing the plastic deformation of the material in the form 

,~. = ~,,~ (~,~), ~ ( . 0  = [ ~ -  p + e -  (~ - 13) v~] [ ~ -  13 + # -  ~ , .1-1,  
c(~) = ~[I - ~ + ~ + ~v~]-~, d(v~) = (I -- ~)[I -- ~ + e -- (~ -- ~)v,]-~, 

Iijhl = (6ih6jl -~ ~)il6Jh)/2. 
(3.7) 

Here, the tensor of the elastoplastic shear moduli Xijks depends on the distribution of 

active slip systems in the partially plastic grains and on the concentrations v~ and v 2 
of both plastic phases. In connection with this, its value at each loading stage is deter- 
mined by the entire strain history of the material. 

The macroscopic plastic strains of the medium are found from (2.4) and (3.7): 

<~.> = %hz <~>, 
e i j k  z = i~ jh  I __ a ( v l ) [ f f j m , ~ _  c ( v l ) ~ i j m n ] [ i m n h l _  d ( v l ) ~ m n h Z ] "  ( 3 . 8 )  

E q u a t i o n s  ( 3 . 7 )  and ( 3 . 8 )  c o m p l e t e l y  d e t e r m i n e  t h e  m a c r o s c o p i c  s t r e s s - s t r a i n  s t a t e  o f  t h e  
medium. E q u a t i o n  ( 3 . 7 )  can  be s i m p l i e d  f o r  i n d i v i d u a l  l o a d i n g  s t a g e s .  I n  e l a s t i c  d e f o r m a -  
t i o n ,  t h e  p l a s t i c  p h a s e s  a r e  a b s e n t  (v  1 = v 2 = 0) and t h e  r h e o l o g i c a l  e q u a t i o n  c o i n c i d e s  
with Hooke's law <sij> = 2~<$ij>. 
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In the region of regular strain-hardening, all three phases are present to the same 
extent in the material (v I # v 2 ~ v 3 ~ 0). The strain equation has the form (3.7) in this 
case. With further monotonic loading, grains in the fully plastic state begin to pre- 
dominate in the polycrystal (v I ~ i, while v 2 and v 3 are small). Expanding Xijk~ into 
a series in v 2 ~ 1 and keeping terms of orders no greater than v2, we obtain the approxi- 
mate equality 

x~kz = 2~, Vuk~ -- ~ f  (~1) v~j~l,  ! (~l) = c (~) + d (~0, ( 3 . 9 )  

w h i c h  i s  v a l i d  a t  t h e  e n d  o f  t h e  t r a n s i t i o n a l  r e g i o n .  

A f t e r  c o m p l e t i o n  o f  t h e  p e r i o d  o f  r e g u l a r  s t r a i n - h a r d e n i n g ,  t h e  m a t e r i a l  r e a c h e s  t h e  
f u l l y  p l a s t i c  s t a t e  v 1 = 1,  v 2 = 1. H e r e ,  we f i n d  f r o m  ( 3 . 7 )  a n d  ( 3 . 9 )  t h a t  

<;~D = 2~e(i + #)-~<~D, (3.10) 

from which it follows that at 8 = 0 <~ij> = 0 - at the fully plastic stage, a material with 

non-strain-hardening grains behaves as an ideally plastic material. With an unlimited in- 
crease in 8, the behavior of the medium is close to elastic. Finally, at 0 < ~ < ~, when 
fully plastic the polycrystal undergoes linear strain-hardening with the modulus ~%(i + 
~)-~ 

The fully plastic state is unattainable for the small group of materials in which the 
rate of isotropic strain-hardening of potentially active slip systems exceeds the rate of 
increase in the resolved shear stresses due to an increase in external stresses. In this 
case, asymptotic formulas (3.9) and (3.10) are no longer valid. 

4. Special Types of Loading. The Parameter %. Let us examine the tension of a poly- 
crystalline specimen by the stresses <o11> ~ 0. It follows from (3.6) that 

<~,> = (i -- v,~)~{n -- v2~Vn~z~t , (4.1) 

where ~22 = ~33 = --qzl/2; qij = 0 (i @ j). 

Taking into account that ~izpp = 0, we find from (4.1) that 

<SII> = [1 - -  ~(U 1 + V2q;p)]li, t (@ p = 3 ~ 1 n l / 2 ) "  ( 4 . 2 )  

The following relations are valid for the given stress-strain state 

<~i> = 2<$11>/3, <~i> = 2(i + v)<~1>/3 (4.3) 

(<y11> is a component of the tensor of the total macroscopic strains). With allowance for 

(2.3) and (4.3), we find from (4.2) that 

<~11> = ~S<~I I> '  E S = E6(v,, v 2, ~p), 
6(v,, v2, *p)= [~ + (i -- ~)(i -- v~- ,2*p)][i + ~ -- ~(i -- v~ -- v~r -~ (4.4) 

(E is the Young's modulus). 

In the case of pure shear (<o12> ~ 0), by similar reasoning we arrive at 

<~,z> = 29s(?~2>, ~Ls = ~6(u~, v~, ~c), ~c = 2V~2,,. ( 4 . 5 )  

For materials in which complete plasticity is possible, Eqs. (4.4) and (4.5) make it 
possible to determine the dimensionless strain-hardening parameter ~ from experimental 
stress-strain curves of polycrystalline specimens tested in tension or torsion. In the 
case of tension, for example, if we assume in (4.4) that v~ = 1 and v 2 = 0 we obtain 

Es:= E@(I ~ ~)-~. (4.6) 

F o r  t h e  e x p e r i m e n t a l  s t r e s s - s t r a i n  c u r v e ,  E s = d < o ~ > / d < ~ l Z >  i s  t h e  s h e a r  m o d u l u s  o f  t h e  
c u r v e  b e y o n d  t h e  l i m i t s  o f  t h e  t r a n s i t i o n a l  s e c t i o n .  We c o n c l u d e  f r o m  ( 4 . 6 )  t h a t  ~ = 
m(l - m) -~ (m = EsE-Z). 

Let us compare the analytical relations obtained for tension and torsion (4.4) and 
(4.5) (lines) with experimental data (x's in Fig. i) from [i0] for an aluminum alloy with 
an fcc lattice. In accordance with [I0], the elastic limit of the material in tension 
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o s = 0.372 N/m 2, the Young's modulus E = 7.07"102 N/m 2, and the shear modulus p = 2.65"102 
N/m 2. With allowance for (i.I), we took the initial shear stress to be equal to T o = Os/2 = 
~s (~s is the elastic limit of the material in shear). We plotted the following quantities 
off the coordinate axis: o = <oii>/~0, <yl1> - curve 1 (tension) and T = <o12>/~0, 2<~12> - 

curve 2 (pure shear). The parameter w, determined from the experimental tension curve, 
was 0.044. This value corresponds to % = 0.046. In calculating the uniaxial tension curve 
from Eq. (4.4), we determined the parameter @p by averaging over the set of orientations 
m = 91 within the first crystallographic triahgle [2]. 

To calculate the pure shear curves from Eq. (4.5), we determined the number of crystal 
orientations in the computation of ~C as M = m • p = 280 (m = 28 is the number of points 
within the crystallographic triangle, p = i0 is the number of crystal orientations about 
the fixed axis). The curves in Fig. 1 illustrate the satisfactory agreement between the 
theoretical and experimental data for the two cases examined. 

Figure 2 shows curves obtained when the theoretical curves plotted in Fig. i are re- 
calculated in the space of stress and strain intensities in accordance with the formulas 

(~i == --~ 

v~ = 7 V (<~11> - <v=>) ~ + (<v11>- <~>)2 + (<v$~> - <v~>) ~ + 6 (<v1=>~ + <~>~ + <v2~> ) (4.7) 

The values of Yi are plotted off the x-axis, while ~i ~ = oi/T 0 is plotted off the y-axis. 

We find from (4.4)-(4.5) that 6ip = Eip~ip, Eip = 2p~(vl, v2, ~p), 6iC = EiC~iC, EiC = 

2p6(vl, v2, ~C)" 

Analytical curve 1 in Fig. 2, corresponding to pure shear, is somewhat lower than curve 
2 for uniaxial tension. Here, at the stage of complete plasticity (v I = i, v 2 = 0) Eip = 
EiC = p~(l + ~)-~ 

Thus, the condition expressing the situation in which the relation oi~ is independent 

of the type of stress-strain state is not satisfied for the proposed mathematical model 
of a polycrystalline medium. The calculations show a deviation from this condition in the 
same direction as indicated by experiments that have been completed on many materials [ii]. 

i. 

2. 

3. 
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DYNAMIC DAMAGE AND FRACTURE OF A PLATE WITH THE EXPANSION OF A 

GAS CAVITY IN WATER 

S. P. Kiselev and A. P. Trunev UDC 539.3 

A large number of studies (see [I], for example) have examined the fracture of a plate 
by pressure created in water by a gas bubble. The studies conducted thus far have general- 
ly dealt with explosive loads. In the present investigation, we examine low pressures in 
the bubble (Ap ~ l0 s Pa) which are created when gas is discharged from a high-pressure 
chamber. There are actually no small parameters in the problem in this cae, and study of 
the plate's fracture requires allowance for the effect of the plate on the expanding bub- 
ble, the character of discharge from the chamber, the stress-strain state of the plate, 
and damage accumulation in the plate. 

i. Formulation of the Problem. We will examine a plate of thickness h lying on the 
surface of a liquid of semiinfinite depth (Fig. I). A gas cavity located at the depth H 
begins to expand at a certain moment of time. The excess pressure Ap causes the plate 
to deform and crack, resulting in the formation of a hole of radius r*. This very complex 
problem will be analyzed in two stages. First we study a linear model of the deformation 
of an infinite plate. The solution of this problem gives us the pressure distribution on 
the surface of the plate p(r, t). In the second stage, we use p(r, t) to calculate the 
fracture of a plate of finite dimensions with allowance for nonlinear strains. 

Let us state the main assumptions underlying the given model: i) the material re- 
mains elastic until fracture; 2) the characteristic length of the wave in the plate is much 
greater than its thickness; 3) the liquid is incompressible and ideal and the flow is a 
potential flow; 4) the gas cavity is spherical. 

Given these assumptions, the equations of the liquid, with boundary conditions for 
the plate and the bubble, have the form 

a~ a~ a~ I a~ a~ a~ 
A~:0 at z<0, -bFi-ffrTf+-~a=a=-az at z:~, 

0 ~  v 2 02~ 0 0 ~  �9 
p ~ q_ p_~- + pg~ q_ DA~$ + Pwh ~ = at z=~ ,  Tr  = UoCOSO+a (i.i) 

at i B = a ,  
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